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ABSTRACT

Objective Whole-genome sequencing of circulating cell free (ccf) DNA from maternal plasma has enabled
noninvasive prenatal testing for common autosomal aneuploidies. The purpose of this study was to extend
the detection to include common sex chromosome aneuploidies (SCAs): [47,XXX], [45X], [47,XXY], and

[47,XYY] syndromes.

Method Massively parallel sequencing was performed on ccf DNA isolated from the plasma of 1564 pregnant women
with known fetal karyotype. A classification algorithm for SCA detection was constructed and trained on this cohort.
Another study of 411 maternal samples from women with blinded-to-laboratory fetal karyotypes was then performed

to determine the accuracy of the classification algorithm.

Results In the training cohort, the new algorithm had a detection rate (DR) of 100% (95%CI: 82.3%, 100%), a false
positive rate (FPR) of 0.1% (95%CIL: 0%, 0.3%), and nonreportable rate of 6% (95%CI: 4.9%, 7.4%) for SCA
determination. The blinded validation yielded similar results: DR of 96.2% (95%CI: 78.4%, 99.8%), FPR of 0.3% (95%
CI: 0%, 1.8%), and nonreportable rate of 5% (95%CI: 3.2%, 7.7%) for SCA determination

Conclusion Noninvasive prenatal identification of the most common sex chromosome aneuploidies is possible using
ccf DNA and massively parallel sequencing with a high DR and a low FPR. © 2013 John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article.
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INTRODUCTION

Since it was first reported by Lo et al' that fetal nucleic acids
were present in maternal plasma in the form of circulating cell
free (ccf) DNA fragments, ccf DNA has shown promise as a
novel analyte for the development of a noninvasive approach
to prenatal genetic testing. This promise, following the
publication of a number of major research and clinical studies
that have described high precision methods to detect fetal
genetic disorders using massively parallel sequencing (MPS),
has now been realized.>”® Initial studies reporting the accurate
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detection of trisomy 21 were soon extended to encompass
additional autosomal variations including trisomy 18, trisomy
13, and subchromosomal copy number variations, and finally
even the complete reconstruction of a fetal genome by
sequencing maternal plasma derived ccf DNA.> '3

In addition to autosomal variants, a number of clinical
disorders have been linked to the copy number of sex
chromosomes. Among the most common sex chromosome
aneuploidy (SCA) conditions are Turner syndrome [45,X],
Trisomy X [47,XXX], Klinefelter syndrome [47,XXY], and
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[47,XYY] syndrome (sometimes referred to as Jacobs
syndrome). Although individually each of these are relatively
rare, cumulatively SCAs occur in approximately 0.3% of all live
births."* Indeed, the population prevalence of all SCAs
surpasses the birth prevalence of autosomal chromosomal
abnormalities (e.g. trisomies 21, 18, or 13). This reflects the
fact that SCAs are rarely lethal and their phenotypic features
are less severe than autosomal chromosomal abnormalities.
According to the World Health Organization (WHO), SCAs
account for nearly one half of all chromosomal abnormalities
in humans. WHO also reports that one out of every 400
phenotypically normal humans (0.25%) has some form of
SCA. This study only focuses on SCAs that involve whole sex
chromosomes (i.e. not deletions, isochromosomes, etc.).

Recent reports indicate that SCAs can be detected using ccf
DNA and MPS, albeit at an accuracy lower than for autosomal
trisomies,® and they were also detected in proof-of-concept
studies.'>'® Similar to the analysis methods used to determine
autosomal aneuploidies through whole genome sequencing,®*®®
prenatal detection of SCAs is based on quantification of
chromosomal dosages. If the measured deviation originated
from the fetus, it is proportional to the fraction of the fetal DNA
in the maternal plasma. The noninvasive detection of SCAs
presents a number of additional challenges when compared with
the detection of autosomal aneuploidies. Among these are
sequencing bias associated with genomic guanine and cytosine
(GC) composition and the sequence similarity between
chromosomes X and Y, leading to mapping challenges.
Moreover, two chromosomes need to be simultaneously
assessed amid a background of presumably normal maternal
sex chromosomes while the sex of the fetus remains unknown.
In addition, the homology between chromosome Y and other
chromosomes reduces the signal-to-noise ratio. Third, the small
size of the Y chromosome can also result in large variations in its
measured representations. Finally, the unknown presence of
maternal and/or fetal mosaicism can hinder optimal
quantification of chromosomal representations and can impede
SCA classification.!”'8

Development of appropriate data sets and algorithms can
overcome these challenges and can enable the accurate
noninvasive detection of SCA. As little as 4% fetal DNA is
sufficient for accurate detection of fetal autosomal trisomy.>*™®
This study reports the establishment of a training set for SCA
detection as well as the testing of the newly developed assay
and algorithm on a blinded validation set. Overall, we
demonstrate in this study that SCAs can be detected
noninvasively with high sensitivity and a low false positive rate.

METHODS

Study design and sample collection

The training cohort was composed of frozen plasma sample
aliquots from 1564 pregnant women collected as part of an
independently developed and coordinated previous study.*®
These samples were selected from a residual bank of aliquots
collected for a prior nested case-control study of pregnant
women at high risk for fetal aneuploidy.*® Samples involved
were collected between 10.5 and 20weeks gestation, prior to
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invasive amniocentesis or chorionic villus sampling. Karyotype
results, including sex chromosomal abnormalities, were
obtained for all samples. This cohort was employed as part of
the laboratory development process of an improved assay for
detection of autosomal aneuploidy.'® The training set included
9 [45,X] samples, 5 [47,XXX] samples, 8 [47,XXY] samples, and 1
[47,XYY] sample. A separate blinded clinical validation cohort
consisted of samples from 411 pregnancies, collected within a
similar gestational period, from pregnant women at high risk
for fetal aneuploidy, also prior to invasive sampling. The
selection criteria excluded samples identified as coming from
patients with multiple gestations, mosaic for sex chromosomes,
or having no documented karyotype report available (n=9).
The demographic information for these samples is presented in
Supporting Table 1.

These 411 samples included 21 [45,X] samples, 1 [47,XXX]
sample, 5 [47,XXY] samples, and 3 [47,XYY] samples. All samples
used for the validation cohort had at least two 4 mL plasma
aliquots available per patient.

All samples were obtained from subjects 18 years of age or
older who provided Institutional Review Board (IRB) (or
equivalent) approved informed consent. Samples for the training
cohort were collected, as previously described, as part of an
international collaboration (ClinicalTrials.gov NCT00877292).*
Samples for the validation cohort were collected under the
following IRB approved clinical studies: Western IRB no.
20091396, Western IRB no. 20080757, Compass IRB no. 00351.

Blood collection and plasma fractionation

Up to 50 mL of whole blood was collected from patients into
EDTA-K2 spray-dried 10 mL Vacutainers (EDTA tubes; Becton
Dickinson, Franklin Lakes, NJ, USA). Whole blood samples
were refrigerated or stored on wet ice and were processed to
plasma within 6h of the blood draw. The maternal whole
blood in EDTA tubes was centrifuged (Eppendorf 5810R plus
swing out rotor) at 4°C at 2500 g for 10 min, and the plasma
was collected. The EDTA plasma was centrifuged a second
time (Eppendorf 5810R plus fixed angle rotor) at 4°C at
15500g for 10min. After the second spin, the EDTA
plasma was removed from the pellet that formed at the
bottom of the tube and distributed into 4mL barcoded
plasma aliquots and immediately stored frozen at <-70°C
until DNA extraction.

Fetal quantifier assay
The quantity of ccf DNA in each sample was assessed by the

Fetal Quantifier Assay as previously described.>%19:2

Circulating cell free (ccf) plasma DNA isolation and purification
The ccf DNA was isolated from up to 4 mL plasma using the
QIAamp Circulating Nucleic Acid Kit (QIAGEN Inc., Valencia,
CA, USA) as previously described.>?° A minimum of 3.5mL
initial plasma volume was required for final classification of
fetal SCA. The ccf DNA was eluted in a final volume of 55 pL.

Sequencing library preparation
The ccf DNA libraries were prepared in 96-well plate format

from 40 pL of ccf DNA per donor following the Illumina TruSeq
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library preparation protocol (Illumina, Inc.,, San Diego, CA,
USA) with AMPure XP magnetic bead clean-up (Beckman
Coulter, Inc., Brea, CA, USA) on a Caliper Zephyr liquid
handler (PerkinElmer Inc., Santa Clara, CA, USA). TruSeq
indexes 1 through 12 were incorporated into libraries. No size
fractionation of ccf DNA libraries was required because of the
characteristic fragmentation of ccf DNA. Libraries were
quantified on the Caliper LabChip GX (PerkinElmer Inc., Santa
Clara, CA, USA) and normalized to the same concentration.?™

Multiplexing, clustering, and sequencing

The ccf DNA libraries were pooled row-wise at a 12-plex level,
clustered to Illumina HiSeq 2000 v3 flow cells, and the ccf
DNA insert sequenced for 36 cycles on a HiSeq 2000. Index
sequences were identified with seven cycles of sequencing.

Quality control

Prior to sequencing, each sample library was assessed for DNA
content. The results were translated to a concentration
measure. Only those samples with the DNA concentrations
greater than 7.5nM/L were accepted in the final analysis.
Samples with fetal DNA fractions less than the detection limit
of 4% were rejected. Furthermore, because the contribution
of the fetal DNA in the maternal plasma is expected to be less
than 50%, the samples with the reported fetal fraction
exceeding 50% were deemed invalid and were also excluded.
In order to assure the quality of the sequencing step, a set of
post-sequencing quality control (QC) metrics were imposed.
The QC criteria included (1) a minimum number of 9 million
autosomal aligned reads per sample, (2) a lower cut-off for
the aligned reads partitioned into 50kBp regions as filtered
for the regions with repeated DNA sequences, subjected to
GC content correction, and divided by the total raw counts,
as well as (3) the observed curvature of the counts-versus-GC
content estimated in the context of the 50 kBp regions.

Bioinformatics analysis

Following sequencing, adapters were removed from the
qualified reads. The reads were then demultiplexed according
to their barcodes and aligned to human reference genome
build 37 (hg.19) using the Bowtie 2 short read aligner.”' Only
perfect matches within the seed regions were allowed for the
final analysis.

To remove systematic biases from raw measurements, we
extended a previously developed normalization procedure®®
to sex chromosomes. All chromosomes were partitioned
into contiguous, nonoverlapping 50kBp genomic regions
and parameterized. The normalization parameters for
chromosome X were derived from a subset of 480 euploid
samples corresponding to known female fetuses. Filtering of
genomic regions yielded the final subsection comprising
76.7% of chromosome X. This subsection was employed to
quantify the amount of chromosome X present in the sample.
A similar procedure was used for chromosome Y using a
separate training set of 23 pooled adult male samples. A subset
of regions representing 2.2% of chromosome Y was found to be
specific to males. Those regions were then used to quantify the
representation of chromosome Y. The normalization method
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used for region selection also enables detection of
subchromosomal abnormalities and does not depend on any
study-specific optimized normalized chromosomal ratio as
done in other studies.?

Classification algorithm

The developed SCA algorithm is sex-specific. The fetal sex is
predicted according to the algorithm described in Mazloom
et al?* Next, SCA is assessed separately for male and female
pregnancies. X chromosome aneuploidies ([45,X] and [47,XXX])
are considered for putative female fetuses, whereas Y
chromosome aneuploidies ([47,XXY] and [47,XYY]) are evaluated
for putative male fetuses. For both sexes, chromosome
representations are evaluated as the ratios of normalized
chromosome X and Y read counts in the genomic regions
described previously, versus the total autosomal read counts.

In brief, samples identified as representing female fetuses
were labeled as [XX] if they fell within a range compatible
with the [46,XX] samples from the training set. Under-
representation of chromosome X led to a labeling of [45,
X], whereas over-representation of chromosome X led to a
labeling of [47,XXX]. To avoid maternal interference with
the chromosome X fetal sex aneuploidy calls, we enforced lower
and upper boundaries on chromosome X representations for the
prediction of [45X] and [47,XXX]. Such lower and upper
thresholds were determined by calculating the maximum
theoretical chromosomal representation of a sample with 70%
fetal fraction. Determination of SCA for the putative female
samples for which the chromosome X representation fell within
borderline ranges was not performed. In z-score space, these
ranges correspond to [—3.5;—2.5] and [2.5;3.5].

Samples identified as representing male fetuses were labeled
as [XY] provided they followed a pattern of chromosome X and
Y distribution compatible with the [46,XY] samples in the
training set. Over-representation of chromosome X in putative
male samples, if comparable with the distribution of
chromosome X for [46,XX] samples, led to a labeling of [47,
XXY]. Over-representation of chromosome Y in putative male
samples led to a labeling of [47,XYY]. Determination of SCA
was not performed for putative male samples for which the
fetal contribution was insufficient.

The nonreportable category included samples affected
either by analytical failures (fetal fraction <4% or >50%, library
concentration < 7.5 nM/L, or QC requirements not satisfied) or
by the region in which a sex aneuploidy assessment cannot
be performed.

RESULTS

Sex chromosome aneuploidy detection in the training set

The performance of the classification algorithm is summarized
in Table 1. Data for the training set are shown in Figure 1A and
B. In this set, there were 740 samples with a karyotype result
that indicated female sex and data that allowed for assessment
of fetal sex aneuploidy. Of these, 732 were correctly classified
(720 XX, 8 X, 4 XXX) whereas 8 reportedly euploid samples
were not classified as XX (3 were identified as X, 1 as XXX,
and 4 as XY). Furthermore, there were 729 samples with a
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Table T Sex chromosome results for the training set, the validation set and the combined datasets. Gray filled boxes indicate
those results where the karyotype and test result agree. Columns correspond to karyotype results whereas rows correspond to the

test outcome

Karyotype Result

Number from the training dataset

Test Result XX X XXX XY XXY XYY Total
XX 720 0 0 4 0 0 724
X 3 8 0 0 0 0 11
XXX 1 0 4 0 0 0 5
XY 4 0 0 718 0 0 722
XXY 0 0 0 0 6 0 6
XYY 0 0 0 0 0 1 1
Not Reported 35 1 1 56 2 0 95
Total 763 9 5 778 8 1 1564
Number from the validation dataset

Test Result XX X XXX XY XXY XYY Total
XX 167 1 0 1 0 0 169

X 1 17 0 0 0 0 18

XXX 0 0 1 0 0 0 1

XY 4 0 0 191 0 0 195
XXY 0 0 0 0 5 0 5
XYY 0 0 0 0 0 2 2

Not Reported 4 3 0 13 0 1 21
Total 176 21 1 205 5 3 411

karyotype result that indicated male sex. Of these, 725 were
correctly classified (718 XY, 6 XXY, and 1 XYY), whereas 4
euploid male samples were annotated as euploid female
samples. This amounts to an overall sensitivity for the detection
of SCA 0f 100% (95% confidence interval 82.3%-100%) and a false
positive rate of 0.1% (95% confidence interval 0%-0.3%).
The nonreportable rate relating to SCA determination was 6%
(95% confidence interval 4.9%-7.4%).

Sex chromosome aneuploidy detection in the validation set
Data for the validation set are shown in Figures 1C and D. One
hundred ninety one samples with a karyotype result that
indicated female sex had data that allowed for assessment of fetal
sex aneuploidy. Of these, a total of 185 were correctly classified
(167 XX, 17 X, 1 XXX). There was 1 false positive and 1 false
negative for [45,X], and 4 XX samples were predicted to be XY.
Of the 199 samples with a karyotype result indicating male sex,
198 were correctly classified (191 XY, 5 XXY, 2 XYY) and 1 was
annotated as a female sample. Thus, the overall sensitivity for
the detection of SCA was 96.2% (95% confidence interval 78.4%—
99.8%) and the false positive rate was 0.3% (95% confidence
interval 0%-1.8%). The nonreportable rate relating to SCA
determination was 5% (95% confidence interval 3.2%—7.7%).
The results from the training set are comparable with the
ones from the validation set. This is not surprising, given the
fact that the training set was mostly used in order to learn
the regions on chromosomes X and Y best suited for SCA
discrimination and for estimating data densities for euploid
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samples alone. The nonreportable rate is higher among
samples pertaining to male fetuses. This is due to the fact that
fewer genomic regions are included from chromosome Y,
which leads to a weaker signal-to-noise ratio.

Discrepant fetal sex results were related to transcription
errors which occurred during the unblinding process. This
error accounts for 4 out of the 5 discrepant results for euploid
samples. The data presented in Table 1 does not correct for
the abovementioned discrepancies.

DISCUSSION
Our laboratory test reporting is currently confined to the most
common autosomal aneuploidies (trisomies 21, 18, and 13). The
test methodology has been designed from inception as a whole
genome analysis. The rationale has been that, when validated, as
in the present study, this would allow the future addition of other
clinically relevant fetal chromosomal abnormalities without
fundamental changes to the assay process. As sequencing
technologies decrease in cost, this will likely allow for transition
to a noninvasive fetal analysis of the information content currently
achieved by karyotyping, or better yet comparative genome
hybridization techniques, but without the need for an invasive
procedure. A logical next step towards this goal is the inclusion
of information regarding other fetal chromosomal complements
such as sex chromosome abnormalities.

Sex chromosome aneuploidies, such as Turner and Klinefelter
syndromes, are less common than the autosomal trisomies, with
roughly a 1 in 3000 incidence for Turner syndrome for live-born

© 2013 John Wiley & Sons, ltd.
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Figure 1 The distribution of chromosome X and Y representations. Panels A and C show the distribution of data for the unaffected samples in
the training set and validation set, correspondingly. Panels B and D contain the data for the affected samples from the training set and the
validation set, correspondingly. The highligted areas mark the regions in which sex chromosome aneuploidy (SCA) is not reportable. (Note
that chromosome X representation is also shown on a standardized scale.) Common karyotyping convention is used in the figure legends;

“NR” stands for “nonreportable”

infants and 1 in 500-1000 for Klinefelter syndrome. The
prevalence of monosomy X is much higher in the first trimester
of pregnancy but often results in subsequent in-utero lethality.
The clinical features of the common SCAs vary from
abnormalities in stature, to more severe cardiac defects, though
the phenotypic abnormalities are rarely life-threatening.
However, the incidence of mosaicism in these disorders may
complicate noninvasive prenatal testing (NIPT), particularly with
respect to gonadal dysgenesis in the adult female population
(patients in whom the phenotypic abnormalities tend toward
menstrual dysfunction, ovulatory defects, and premature
ovarian failure).

Until recently, ultrasound was the only noninvasive method
that may suggest these conditions prenatally, and invasive
testing was required for further elucidation. Although Turner
syndrome may exhibit a finding, such as a cystic hygroma,
sonographic abnormalities in other SCAs may be quite subtle,
even for the most skilled technologist, or nonexistent all together.
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The algorithm presented here for SCAs led to a combined
sensitivity of 96.2% (95% confidence interval 78.4%-99.8%) and
false positive rate of 0.3% (95% confidence interval 0%—1.8%)
with a nonreportable rate of 5% (95% confidence interval
3.2%-7.7%). NIPT, with demonstrated robust performance in
detecting the more common autosomal trisomies, can clearly
also aid as an adjunctive test to ultrasound in detecting SCAs,
as this study has demonstrated.

An important ongoing challenge is to address the counseling-
related issues that accompany the diagnosis of a SCA by NIPT.
As noted previously, the phenotypic presentation of SCAs may
vary considerably. In particular, women of reproductive age
who appear phenotypically normal, but manifest menstrual
irregularities such as oligomenorrhea may, in fact, be mosaic
for their sex chromosomes, for example, [45,X]/[46,XX]/[47,
XXX]. Pregnancy can occur in such patients, and the diagnosis
of such a chromosomal finding by NIPT could represent not only
a fetal SCA but also low-level maternal mosaicism — particularly

© 2013 John Wiley & Sons, lid.
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in the presence of normal targeted fetal ultrasound imaging. For
a full discrimination of fetal versus maternal mosaicism,
sequencing of the buffy coat (where maternal cells are found)
can be considered. However, the number of positive cases
suggesting fetal SCA is expected to be very small and should be
put into the context of the current primary indication and
demand in the laboratory for NIPT.

Some recent publications describing noninvasive prenatal
testing state a detection rate of 100% of trisomy 21.% In clinical
practice, a test with perfect performance is impossible to
achieve. Recent reports indicate that false negatives do occur
even when such testing has claimed 100% detection.** Multiple
reasons can account for such errors: insufficient fetal DNA,
confined placental mosaicism, maternal metastatic disease,?*
or chain of custody events.

At present, American Congress of Obstetricians and
Gynecologists guidelines®® advocate confirmatory diagnostic
testing for those cases in which there is an over-representation
of chromosome 21, 18, or 13 material suggesting fetal Down
syndrome, Edwards syndrome, or Patau syndrome. The data
from this cohort of SCAs demonstrates robust testing
performance similar to what has been seen with the autosomal
aneuploidies. The same approach of confirming positive cases
with invasive testing could be considered when NIPT suggests
the rare presence of Turner, Klinefelter, or XYY syndromes.
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